3.6.13 \(\int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx\) [513]

3.6.13.1 Optimal result
3.6.13.2 Mathematica [A] (verified)
3.6.13.3 Rubi [A] (verified)
3.6.13.4 Maple [A] (verified)
3.6.13.5 Fricas [A] (verification not implemented)
3.6.13.6 Sympy [F(-1)]
3.6.13.7 Maxima [B] (verification not implemented)
3.6.13.8 Giac [F(-1)]
3.6.13.9 Mupad [B] (verification not implemented)

3.6.13.1 Optimal result

Integrand size = 35, antiderivative size = 181 \[ \int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx=\frac {2 a^3 (230 A+301 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{105 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a^3 (10 A+11 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 (10 A+7 B) \sqrt {a+a \cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 a A (a+a \cos (c+d x))^{3/2} \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d} \]

output
2/7*a*A*(a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^(7/2)*sin(d*x+c)/d+2/15*a^3*(10* 
A+11*B)*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2/35*a^2*(10* 
A+7*B)*sec(d*x+c)^(5/2)*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/d+2/105*a^3*(230 
*A+301*B)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^(1/2)
 
3.6.13.2 Mathematica [A] (verified)

Time = 0.49 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.57 \[ \int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx=\frac {a^2 \sqrt {a (1+\cos (c+d x))} (290 A+196 B+(930 A+987 B) \cos (c+d x)+2 (115 A+98 B) \cos (2 (c+d x))+230 A \cos (3 (c+d x))+301 B \cos (3 (c+d x))) \sec ^{\frac {7}{2}}(c+d x) \tan \left (\frac {1}{2} (c+d x)\right )}{210 d} \]

input
Integrate[(a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^(9/ 
2),x]
 
output
(a^2*Sqrt[a*(1 + Cos[c + d*x])]*(290*A + 196*B + (930*A + 987*B)*Cos[c + d 
*x] + 2*(115*A + 98*B)*Cos[2*(c + d*x)] + 230*A*Cos[3*(c + d*x)] + 301*B*C 
os[3*(c + d*x)])*Sec[c + d*x]^(7/2)*Tan[(c + d*x)/2])/(210*d)
 
3.6.13.3 Rubi [A] (verified)

Time = 1.25 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.17, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.343, Rules used = {3042, 3440, 3042, 3454, 27, 3042, 3454, 27, 3042, 3459, 3042, 3250}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {9}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2} (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{9/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3440

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(\cos (c+d x) a+a)^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 3454

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2}{7} \int \frac {(\cos (c+d x) a+a)^{3/2} (a (10 A+7 B)+a (2 A+7 B) \cos (c+d x))}{2 \cos ^{\frac {7}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} \int \frac {(\cos (c+d x) a+a)^{3/2} (a (10 A+7 B)+a (2 A+7 B) \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (a (10 A+7 B)+a (2 A+7 B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3454

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} \left (\frac {2}{5} \int \frac {\sqrt {\cos (c+d x) a+a} \left (7 (10 A+11 B) a^2+(30 A+49 B) \cos (c+d x) a^2\right )}{2 \cos ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a^2 (10 A+7 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} \left (\frac {1}{5} \int \frac {\sqrt {\cos (c+d x) a+a} \left (7 (10 A+11 B) a^2+(30 A+49 B) \cos (c+d x) a^2\right )}{\cos ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a^2 (10 A+7 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} \left (\frac {1}{5} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (7 (10 A+11 B) a^2+(30 A+49 B) \sin \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a^2 (10 A+7 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3459

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} \left (\frac {1}{5} \left (\frac {1}{3} a^2 (230 A+301 B) \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {14 a^3 (10 A+11 B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 (10 A+7 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} \left (\frac {1}{5} \left (\frac {1}{3} a^2 (230 A+301 B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {14 a^3 (10 A+11 B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 (10 A+7 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3250

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} \left (\frac {1}{5} \left (\frac {14 a^3 (10 A+11 B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {2 a^3 (230 A+301 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 (10 A+7 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )\)

input
Int[(a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^(9/2),x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a*A*(a + a*Cos[c + d*x])^(3/2)*S 
in[c + d*x])/(7*d*Cos[c + d*x]^(7/2)) + ((2*a^2*(10*A + 7*B)*Sqrt[a + a*Co 
s[c + d*x]]*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + ((14*a^3*(10*A + 11*B 
)*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) + (2*a^3 
*(230*A + 301*B)*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + 
d*x]]))/5)/7)
 

3.6.13.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3250
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(3/2), x_Symbol] :> Simp[-2*b^2*(Cos[e + f*x]/(f*(b*c + a*d)*Sq 
rt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3440
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p   Int[(a + b*Sin[e + f*x])^m*((c + 
d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g 
, m, n, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && I 
ntegerQ[n])
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 
3.6.13.4 Maple [A] (verified)

Time = 2.09 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.57

\[-\frac {2 a^{2} \cot \left (d x +c \right ) \left (\cos \left (d x +c \right )-1\right ) \left (\left (230 \left (\cos ^{3}\left (d x +c \right )\right )+115 \left (\cos ^{2}\left (d x +c \right )\right )+60 \cos \left (d x +c \right )+15\right ) A +\cos \left (d x +c \right ) \left (301 \left (\cos ^{2}\left (d x +c \right )\right )+98 \cos \left (d x +c \right )+21\right ) B \right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sec ^{\frac {9}{2}}\left (d x +c \right )\right )}{105 d}\]

input
int((a+cos(d*x+c)*a)^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(9/2),x)
 
output
-2/105*a^2/d*cot(d*x+c)*(cos(d*x+c)-1)*((230*cos(d*x+c)^3+115*cos(d*x+c)^2 
+60*cos(d*x+c)+15)*A+cos(d*x+c)*(301*cos(d*x+c)^2+98*cos(d*x+c)+21)*B)*(a* 
(1+cos(d*x+c)))^(1/2)*sec(d*x+c)^(9/2)
 
3.6.13.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 114, normalized size of antiderivative = 0.63 \[ \int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx=\frac {2 \, {\left ({\left (230 \, A + 301 \, B\right )} a^{2} \cos \left (d x + c\right )^{3} + {\left (115 \, A + 98 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + 3 \, {\left (20 \, A + 7 \, B\right )} a^{2} \cos \left (d x + c\right ) + 15 \, A a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )} \sqrt {\cos \left (d x + c\right )}} \]

input
integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(9/2),x, algo 
rithm="fricas")
 
output
2/105*((230*A + 301*B)*a^2*cos(d*x + c)^3 + (115*A + 98*B)*a^2*cos(d*x + c 
)^2 + 3*(20*A + 7*B)*a^2*cos(d*x + c) + 15*A*a^2)*sqrt(a*cos(d*x + c) + a) 
*sin(d*x + c)/((d*cos(d*x + c)^4 + d*cos(d*x + c)^3)*sqrt(cos(d*x + c)))
 
3.6.13.6 Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)**(9/2),x)
 
output
Timed out
 
3.6.13.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 488 vs. \(2 (157) = 314\).

Time = 0.36 (sec) , antiderivative size = 488, normalized size of antiderivative = 2.70 \[ \int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx=\frac {8 \, {\left (\frac {5 \, {\left (\frac {21 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {56 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {63 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {36 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac {8 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}}\right )} A {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{2}}{{\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {9}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {9}{2}} {\left (\frac {2 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {\sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + 1\right )}} + \frac {7 \, {\left (\frac {15 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {50 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {63 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {36 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac {8 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}}\right )} B {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{2}}{{\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {9}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {9}{2}} {\left (\frac {2 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {\sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + 1\right )}}\right )}}{105 \, d} \]

input
integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(9/2),x, algo 
rithm="maxima")
 
output
8/105*(5*(21*sqrt(2)*a^(5/2)*sin(d*x + c)/(cos(d*x + c) + 1) - 56*sqrt(2)* 
a^(5/2)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 63*sqrt(2)*a^(5/2)*sin(d*x + 
 c)^5/(cos(d*x + c) + 1)^5 - 36*sqrt(2)*a^(5/2)*sin(d*x + c)^7/(cos(d*x + 
c) + 1)^7 + 8*sqrt(2)*a^(5/2)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9)*A*(sin( 
d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^2/((sin(d*x + c)/(cos(d*x + c) + 1) + 
 1)^(9/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(2*sin(d*x + c)^2/( 
cos(d*x + c) + 1)^2 + sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 1)) + 7*(15*sq 
rt(2)*a^(5/2)*sin(d*x + c)/(cos(d*x + c) + 1) - 50*sqrt(2)*a^(5/2)*sin(d*x 
 + c)^3/(cos(d*x + c) + 1)^3 + 63*sqrt(2)*a^(5/2)*sin(d*x + c)^5/(cos(d*x 
+ c) + 1)^5 - 36*sqrt(2)*a^(5/2)*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + 8*s 
qrt(2)*a^(5/2)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9)*B*(sin(d*x + c)^2/(cos 
(d*x + c) + 1)^2 + 1)^2/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(-sin 
(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(2*sin(d*x + c)^2/(cos(d*x + c) + 
1)^2 + sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 1)))/d
 
3.6.13.8 Giac [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(9/2),x, algo 
rithm="giac")
 
output
Timed out
 
3.6.13.9 Mupad [B] (verification not implemented)

Time = 5.25 (sec) , antiderivative size = 579, normalized size of antiderivative = 3.20 \[ \int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^{\frac {9}{2}}(c+d x) \, dx=\frac {\sqrt {\frac {1}{\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}}\,\left (\frac {a^2\,\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,\left (230\,A+301\,B\right )\,2{}\mathrm {i}}{105\,d}-\frac {B\,a^2\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,2{}\mathrm {i}}{d}+\frac {B\,a^2\,{\mathrm {e}}^{c\,6{}\mathrm {i}+d\,x\,6{}\mathrm {i}}\,\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,2{}\mathrm {i}}{d}-\frac {a^2\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,\left (10\,A+17\,B\right )\,2{}\mathrm {i}}{3\,d}+\frac {a^2\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,\left (10\,A+17\,B\right )\,2{}\mathrm {i}}{3\,d}+\frac {a^2\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,\left (100\,A+113\,B\right )\,2{}\mathrm {i}}{15\,d}-\frac {a^2\,{\mathrm {e}}^{c\,5{}\mathrm {i}+d\,x\,5{}\mathrm {i}}\,\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,\left (100\,A+113\,B\right )\,2{}\mathrm {i}}{15\,d}-\frac {a^2\,{\mathrm {e}}^{c\,7{}\mathrm {i}+d\,x\,7{}\mathrm {i}}\,\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,\left (230\,A+301\,B\right )\,2{}\mathrm {i}}{105\,d}\right )}{{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}+3\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+3\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}+3\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}+3\,{\mathrm {e}}^{c\,5{}\mathrm {i}+d\,x\,5{}\mathrm {i}}+{\mathrm {e}}^{c\,6{}\mathrm {i}+d\,x\,6{}\mathrm {i}}+{\mathrm {e}}^{c\,7{}\mathrm {i}+d\,x\,7{}\mathrm {i}}+1} \]

input
int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(9/2)*(a + a*cos(c + d*x))^(5/2) 
,x)
 
output
((1/(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*((a^2*(a + a*(e 
xp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(230*A + 301*B)*2i)/( 
105*d) - (B*a^2*exp(c*1i + d*x*1i)*(a + a*(exp(- c*1i - d*x*1i)/2 + exp(c* 
1i + d*x*1i)/2))^(1/2)*2i)/d + (B*a^2*exp(c*6i + d*x*6i)*(a + a*(exp(- c*1 
i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*2i)/d - (a^2*exp(c*3i + d*x*3 
i)*(a + a*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(10*A + 1 
7*B)*2i)/(3*d) + (a^2*exp(c*4i + d*x*4i)*(a + a*(exp(- c*1i - d*x*1i)/2 + 
exp(c*1i + d*x*1i)/2))^(1/2)*(10*A + 17*B)*2i)/(3*d) + (a^2*exp(c*2i + d*x 
*2i)*(a + a*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(100*A 
+ 113*B)*2i)/(15*d) - (a^2*exp(c*5i + d*x*5i)*(a + a*(exp(- c*1i - d*x*1i) 
/2 + exp(c*1i + d*x*1i)/2))^(1/2)*(100*A + 113*B)*2i)/(15*d) - (a^2*exp(c* 
7i + d*x*7i)*(a + a*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2) 
*(230*A + 301*B)*2i)/(105*d)))/(exp(c*1i + d*x*1i) + 3*exp(c*2i + d*x*2i) 
+ 3*exp(c*3i + d*x*3i) + 3*exp(c*4i + d*x*4i) + 3*exp(c*5i + d*x*5i) + exp 
(c*6i + d*x*6i) + exp(c*7i + d*x*7i) + 1)